

Cost Comparison: Fiber Laser vs. CO₂ Laser – High Power Cutting

	Fiber Laser (3,000W)	CO ₂ Laser (4,000W)
Laser System Laser and power supplies Computer and software Motion system	A combination of GE Fanuc (optional) heavy duty industrial motion systems and revolutionary fiber laser technology offer an easy-to-use and efficient alternative to large, bulky Nd:YAG and CO ₂ systems for precision cutting applications. The motion systems also feature reliable worldwide support.	
Reflectivity	Much less power is required for cutting reflective materials like aluminum or copper since more of the laser energy is absorbed by the substrate. This allows for intricate high-quality cutting at higher efficiencies than comparable laser cutting systems.	
Reliability MTBF (Mean Time Between Failure)	50,000 to 100,000 hours (estimated)	Only around 20,000 hours
Power Consumption Electrical power requirements	Very low power consumption A 3000W fiber laser requires 10kW of electrical power plus 5kW for a chiller with a total of 15kW.	An equivalent 4000W CO_2 laser and chiller combination could be as high 250kW for operation.
(1kW cost \$.06 per hour based on working 250 days)	\$ 1,350 per year 15kW per hour at 6 hr. shift	\$ 19,350 per year @ 215kW per hour at 6 hr. shift
	\$ 2,700 per year 15kW per hour at 12 hr. shift	\$38,700 per year @ 215kW per hour at 12hr. shift
Maintenance	 No maintenance No consumables No cleaning or aligning of mirrors or beam path 	Consumables: \$17,500 gas use in 6 hr. shift \$35,000 gas use in 12 hr. shift Nitrogen: 99.9999% pure CO ₂ : 99.9999% pure Helium: 99.9999% pure Maintenance: \$45,000 per year on an average 8 hr. shift
Power Efficiency Electrical Power Efficiency	Up to 50%	Only as high as 20%
Beam Quality & Spot Size	TEM00 (<1.15) beam profile results in significantly higher power density directed to the material surface. Requires less power for the same result in comparison with CO ₂ systems	
Optical Path/Beam Path	Flexible Cable (up to 50m)	Mirrors and optical path Loss of beam quality and significant power drop-off
Cooling	Requires smaller chillers than equivalent CO ₂ laser cutting systems	
Total Cost of Ownership First Year	\$1,350 yearly at 6hr. shifts \$2,700 yearly at 12 hr. shifts	\$ 81,850 yearly at 6 hr. shifts \$ 118,700 yearly at 12 hr. shifts